Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 25(1): 111-122, Ene. 2022. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-216016

RESUMO

In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.(AU)


Assuntos
Humanos , Ilhas Genômicas , Virulência , Fatores de Virulência , Morganella morganii , Microbiologia
2.
Int Microbiol ; 25(1): 111-122, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363151

RESUMO

In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.


Assuntos
Morganella morganii , Infecções Urinárias , Humanos , Morganella morganii/genética , Variação de Fase , Regulon , Natação
3.
Oncotarget ; 8(41): 70496-70507, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050297

RESUMO

Naturally occurring extracellular vesicles (EVs) play essential roles in intracellular communication and delivery of bioactive molecules. Therefore it has been suggested that EVs could be used for delivery of therapeutics. However, to date the therapeutic application of EVs has been limited by number of factors, including limited yield and full understanding of their biological activities. To address these issues, we analyzed the morphology, molecular composition, fusion capacity and biological activity of Cytochalasin B-induced membrane vesicles (CIMVs). The size of these vesicles was comparable to that of naturally occurring EVs. In addition, we have shown that CIMVs from human SH-SY5Y cells contain elevated levels of VEGF as compared to the parental cells, and stimulate angiogenesis in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...